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of matrices X that have λ1 and λ2 as some of their eigenvalues. We

also find the nearest matrix X .
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1. Introduction

In the recent paper [1], Malyshev obtained the following formula for the 2-norm distance rsep(A)

from a complex n × nmatrix to a closest matrix with a multiple eigenvalue:

rsep(A) = min
λ∈C

max
γ≥0

σ2n−1(G(γ )). (1)

Here,

G(γ ) =
(

λI − A γ I

0 λI − A

)
,
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and σ2n−1(G(γ )) is the penultimate singular value of the matrix G, assuming that the singular values

are numbered in decreasing order. Ikramov and Nazari in [3] introduced a correction for Malyshev’s

formula when A be a normal matrix. Lippert in [4] has presented a generalization for Malyshev’s

problem, finding ‖�M‖2 optimal perturbations of M such that M − �M has two given eigenvalues.

In 2005, Gracia [2] extended formula (1) for two prescribed eigenvalues, in the following theorems.

Define

F(γ ) =
(

λ1I − A γ I

0 λ2I − A

)
.

Theorem 1. Let γ ∗ > 0 be a local optimizer of function f (γ ) = σ2n−1(F(γ )). Suppose

σ ∗ = f (γ ∗) > 0,

then there exists a pair of normalized singular vectors associatedwith the singular value σ ∗ of F(γ ∗), namely

a left vector

u =
(
u1
u2

)
, u1,u2 ∈ Cn

and a corresponding right vector

v = 1

σ ∗ F(γ ∗)∗u =
(
v1
v2

)
, v1, v2 ∈ Cn

such that

Re(u∗
1v2) = 0. (2)

Moreover, the matrices

U = (u1 u2), V = (v1 v2) (3)

satisfy the relation

U∗U = V∗V . (4)

Theorem 2. If γ ∗ in Theorem 1 is a positive number, then both matrices in (3) have rank 2. The matrix

B = A + �, where

� = σ ∗UV †, (5)

is the closest (with respect to the 2-norm) matrix to A having eigenvalues λ1 and λ2 and

‖�‖2 = σ ∗. (6)

Below, we discuss some issues related to the computer implementation of this method. It turns out

that the case of a general matrix A is substantially different from that of a normal matrix A.

2. Normal matrix

Let A be a normal matrix. We illustrate by a specific example. If

A =

⎛
⎜⎜⎜⎜⎝
7 0 0 0 1

0 8 1 0 2

0 1 1 1 0

0 0 1 4 1

1 2 0 1 7

⎞
⎟⎟⎟⎟⎠ ,

and λ1 = 0, λ2 = 2, we found the values

γ ∗ = 1.05800, σ ∗ = 1.84331.
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The singular value σ2n−2(F(γ ∗)) equals 1.84382. These two values are approximately the same, namely

σ2n−1(F(γ ∗)) � σ2n−2(F(γ ∗)).

Thus, in the optimal matrix F(γ ∗), the value σ ∗ is iterated.

Let u(2n−1), v(2n−1) and u(2n−2), v(2n−2) be the pairs of singular vectors of F(γ ∗) associatedwith σ2n−1

and σ2n−2, respectively, that MATLAB gives us. An attempt to use any of these pairs for implementing

the construction described in Theorem2 leads to catastrophic results. Namely, for thematrix�(2n−1) =
−σ ∗U(2n−1)V (2n−1)†, we obtain

‖�(2n−1)‖ = 1.49826 × 1012,

while �(2n−2) = −σ ∗U(2n−2)V (2n−2)† has the norm

‖�(2n−2)‖ = 6.26340 × 1012.

It is easy to find the reason why equality (6) is violated in both cases. Calculating u∗
1
v2, we obtain for

the pair u(2n−1), v(2n−1)

−0.14488

and for the pair u(2n−2), v(2n−2)

0.60502.

In any case above, equality (2), even approximately does not hold. It follows that equality (4) is

violated.

The situation can be rectified as follows. Consider the number

σ ∗ = σ2n−1(F(γ ∗))

as a double singular value of F(γ ∗) and the vectors u(2n−1) and u(2n−2) as an orthonormal basis in the

left singular subspace associated with σ ∗. In this subspace, we look for a normalized vector

u = αu(2n−1) + βu(2n−2), |α|2 + |β|2 = 1, (7)

and combined with the associated right singular vector

v = αv(2n−1) + βv(2n−2) (8)

in order to satisfy relation (2).

From (2) we have

Re(u∗
1v2) = 0. (9)

Substituting (7) and (8) into (9), we achieve the relation

(ᾱ β̄)ReW

(
α

β

)
= 0, (10)

in which

W =
⎛
⎝u(2n−1)∗

1
v

(2n−1)

2
u

(2n−1)∗
1

v
(2n−2)

2

u
(2n−2)∗
1

v
(2n−1)

2
u

(2n−2)∗
1

v
(2n−2)

2

⎞
⎠ , (11)

and

Wr = ReW =
(

ReW11 (W12 + W21)/2

(W12 + W21)/2 ReW22

)
. (12)

The existence of a nontrivial solution for Eq. (10) is ensured by the fact that the Hermitian matrix

(10) is indefinite. In fact, let us call g(γ ) = σ2n−2(F(γ )). Let μ1 � μ2 be the eigenvalues of the matrix

ReW . Then the right derivatives of the functions f and g at γ ∗ are equal to μ2 and μ1

f ′(γ ∗+) = μ2, g′(γ ∗+) = μ1,
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respectively. Since f is decreasing and g is increasing at right of γ ∗, we deduce that

μ2 < 0 and μ1 > 0.

The numbers α and β can be found, for example, in the following manner. Let

Wr = PMP∗, M = diag(μ1,μ2),

be the spectral decomposition ofW . Set(
α

β

)
= P

(
γ

δ

)
, (13)

and recast (10) as

μ1|γ |2 + μ2|δ|2 = 0, |γ |2 + |δ|2 = 1. (14)

The pair

( |μ2|
|μ1| + |μ2|

) 1
2

,

( |μ1|
|μ1| + |μ2|

) 1
2

is a solution to system (14). (Recall again that μ1 and μ2 are numbers of different signs.) Using (13),

we obtain the corresponding pair α,β.

In the example above with matrix A, this technique yields

α = −0.89822, β = −0.43955.

For the corresponding singular vectors (7) and (8), we have

u∗
1v2 = −1.45717 × 10−16.

The matrix � constructed from these vectors has the norm

1.84350,

which is in very good agreement with σ ∗. Finally, we found

U∗U =
(
0.09189 0.21587

0.21587 0.90811

)
, V∗V =

(
0.09191 0.21590

0.21590 0.90809

)
,

it follows that U∗U � V∗V .
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